A Discrete-Event Coordinates Methodology for A Composite Curve

Abstract

I. Akiije

ABSTRACT - This paper gives information about the results of investigation on a discrete-event simulation methodology to compute coordinates of a composite curve through Information and Communication Technology (ICT) system. Tangible modelling and simulation validity was done using general purpose application programs that is readily available rather than costly and tedious conventional hand method. In the methodology, deflection angle, tangential angles for the two transition curves and central circular arc, together with deviation angle computations, were successful modelled and simulated via ICT approach. Coordinates produced as the result of the process are useful set of numbers in Eastings and Northings to defining the entry transition curve, central circular arc and the exit transition curve of a highway or railroad composite curve at site. The conclusion in this study is that a discrete-event simulation is a suitable methodology for computing useful coordinates for setting out of a composite curve meant for a safe highway or railroad.

Index Terms - Coordinates, Composite, Discrete, Safe, Simulation, Tangential, Transition

1 INTRODUCTION

Discrete-event simulation could practically be done by hand calculations whereas for the amount of data that must be stored and manipulated for most real-world systems dictates that same is better done on a digital computer, Schriber and Brunner [1], Law and Kelton [2]. Discrete-event simulation goal in this paper is concerned with the modelling of a composite curve for highway or railroad in Information and Communication Technology (ICT) environment rather than traditional hand approach. According to Law and Kelton [2], discrete-event simulation concerns the modelling of a system by a representation in which the state variables change instantaneously at separate points. Simulation is a powerful tool for the evaluation and analysis of new system designs, modifications to existing systems and proposed changes to control systems and operating rules. Carson [3] claimed that conducting a valid simulation is both an art and a science. Adedimila and Akiije [4], Akiije [5], Akiije [6] considered simulation as the representation of physical systems and phenomena by computers, models and other equipment.

Simulation of coordinates for a composite curve by employing computer is the focus of this study. Coordinates are ordered set of numbers which specified the position or orientation of a point or geometric configuration relative to a set of axes in Eastings and Northings as claimed by Akiije [7].
I. Akiije. Department of Civil and Environmental Engineering, University of Lagos, e-mail: akiijeia@yahoo.com

According to Tiberius [8], McDonald [9], coordinates may be obtained from the record of some accurately located points of the framework of geodetic surveys or global positioning system (GPS).

Composite curve consists of entry transition curve, central circular arc and the exit transition curve. Types of transition curve in use for composite curve include clothoid or spiral, Bernoulli's Leminscate, cubic parabola, cubical spiral and S.Shaped. The need for transition curve paves in where a vehicle travelling on a straight course enters a curve of finite radius. At this juncture, Andrzej [10] claimed that such vehicle will be subjected to a sudden centrifugal force that will cause shock and sway. In order to avoid this centrifugal force, it is customary to provide a transition curve at the beginning and at the end of a circular curve.

A transition curve has a radius equal to infinity at the end of the straight and gradually reducing the radius to the radius of the circular curve where the later begins. Incidentally, the transition portion is useful for building up the centrifugal force gradually. Also, it provides a more aesthetically pleasing alignment and gradual application of the superelevation. Superelevation is the desirable raising of one edge of a roadway or a rail higher than the other along curve of a road or railway. The reason is to counteract centrifugal forces on passengers and vehicles or trains. The action brings comfort and safety to passengers and also prevents vehicles from overturning or sliding off the highway.

The objectives of this paper therefore is to provide a desirable automation platform for highway engineers to define coordinates as set of numbers in Eastings and Northings that are useful in an electronics environment for the design of a composite curve. Significantly with this study knowledge, computation of any segment of the composite
curve can be modelled in a particular module and be simulated. Also, this study can be appreciated for where local computation modification is to be made in the modelling module; it is always made at ease. At this facet, by selection of an existing value and replacement of same by a new one, the required results are generated automatically. This technique is a powerful tool for geometric modelling and simulation of a composite curve coordinates. The justification for this study is that the use of digital computer is a most common computing device and a cheaper means of computation rather than conventional hand approach. In this study, digital computer performs operations on data represented in digital or number form with continuity and reusability capability for further necessary computation coordinates.

It is worthy of note that, the process of minimization and elimination of errors caused by instrumental imperfections or human operation by manual approach is a tedious work in order to accurately determine coordinates of points of a composite curve. However, GPS receiver can locate points in coordinates to an accuracy of $\pm 0.02 \mathrm{~m}$ as claimed by Uren and Price [11]. Therefore it is a useful instrument for defining coordinates points developed by the discrete-event methodology for a composite curve. GPS consists of three segments called the space segment, control segment and user segment. The use of GPS is advanced in this study at user segment level to capture coordinates of field stations and intersection points as data to compute coordinates for chainage points to define composite curve at the highway site. Also, Microsoft Excel a general purpose application program has been used to generate necessary chainage points coordinates for composite curve through computation via simulation modelling in an electronics office.

2 CONCEPTUAL FRAMEWORK

Transition curve chosen in this study is the cubic parabola simply because its formulae and calculations are easier to show in written form as claimed by Uren and Price [11]. Figure 1 is showing a typical framework of composite curve. The deflection angle is θ as measured on site or in the office by ICT methods rather than conventional hand method of using protractor. The radius R of the composite curve as required by the design speed V based upon design standards is possible by using Equation 1. The rate of change of radial acceleration c is defined by equation 2 . Transition curve length $L_{T}=$ $T T_{1}=T_{2} U$ as defined by Equation 3.

In Figure 2, the shift at YG or WK is bisected by the transition curve and the transition curve is bisected by the shift. The shift S is defined by Equation 4 . The tangent length IT $=I U$ is defined by Equation 5 . The maximum deviation
angle $\phi_{\text {max }}$ at the common tangent between the transition and the circular curve is defined by Equation 6. The length of the circular arc $T_{1} T_{2}$ is defined by Equation 7. The total length of the composite curve $L_{\text {total }}$ is defined by Equation 8.

Figure 3 is showing the relationship between deviation angle ϕ and tangential angle δ. Deviation angle ϕ is defined by Equation 9. The formula showing the relationship between deviation angle ϕ and tangential angle δ is in Equation 10. The tangential angle δ for transitional curves is represented by Equations 11 and 12. The tangential angle α of the central circular arc is defined by Equations 13 and 14. Superelevation is calculated using Equation 15.

A technique of establishing a composite curve relies extensively on the use of transparent templates by conventional hand methodology. Pre-computed data from template are compiled into a design table that can be used as an input for the computation of the composite curve referenced completely to a coordinate system. The use of templates and design table relieves the design engineer of much computation and ensures more standardization and higher design standards. Although the conventional hand approach is a standard approach, it is tedious and it is not made in an electronic environment. In recent time, individual engineer's productivity has been increased by the use of automated procedures that rely extensively on electronic computer. Automated computation of coordinates to readily generate a composite curve is the focus of this study.

Design and setting out of the composite curve on site using coordinates methodology require the use of both rectangular and polar coordinates as claimed by Akiije [6]. The methodology requires the determination of eastings, northings and whole circular bearing of each chainage point along the alignment centre line as found in Equations 16 and 17. The variables for Equations 16 and 17 are in Figures 4 and 5. These variables include: E_{A} is Easting of $A ; E_{B}$ is Easting of B; N_{A} is Northing of $\mathrm{A} ; N_{B}$ is Northing of $\mathrm{B} ; \Delta E_{A B}$ is eastings difference from A to $\mathrm{B} ; \Delta N_{A B}$ is northings difference from A to $\mathrm{B} ; D_{A B}$ is horizontal length of $\mathrm{AB} ; \theta_{A B}$ is wholecircle bearing of line $A B$.

Hence, in this study, an innovative coordinates methodology of using GPS together with Microsoft Excel is introduced for appropriate cheaper technology of computing coordinates for designing and setting out of a composite curve at a site. In this new methodology, the use of horizontal control points supposedly established by surveyor near the alignment that may not be readily found is not necessary since

GPS could be used to capture coordinates of essential points that are required.

Figure 2: The Shift of a Cubic Parabola
Source: Uren and Price [11]

TABLE 1: VARIABLE EQUATIONS FOR A COMPOSITE CURVE

$\frac{V^{2}}{R}=14.14 \text { for } \mathrm{V}=100 \mathrm{~km} / \mathrm{h}$	(1)	$c \leq 0.3 \mathrm{~m} / \mathrm{s}^{2}$	(2)
$L_{T}=\frac{V^{3}}{3.6^{3} c R}$	(3)	$S=\frac{L_{T}^{2}}{24 R} \mathrm{~m}$	(4)
$I T=I U=(R+S) \tan \left(\frac{\theta}{2}\right)+\frac{L_{T}}{2} \mathrm{~m}$	(5)	$\phi_{\max }=\frac{L_{T}}{2 R}$ radians	(6)
$L_{\text {cricuiararc }}=T_{1} T_{2}=R\left(\theta-2 \phi_{\operatorname{mas}}\right) \mathrm{m}$	(7)	$\begin{aligned} L_{\text {total }} & =T T_{1}+T_{1} T_{2}+T_{2} U \\ & =L_{T}+R\left(\theta-2 \phi_{\text {nax }}\right)+L_{T} m \end{aligned}$	(8)
$\phi=\frac{l^{2}}{2 R L_{T}} \text { radians }$	(9)	$\delta_{\max }=\frac{\phi_{\max }}{3}$ radians	(10)
$\delta=\frac{l^{2}}{6 R L_{T}} \text { radians }$	(11)	$\delta=\frac{l^{2}}{6 R L_{T}} \times \frac{180}{\pi} \text { degrees }$	(12)
$\alpha=\frac{l}{R} \text { radians }$	(13)	$\alpha=\frac{180 \times l}{2 \pi R}$	(14)
$e \%=\frac{V^{2}}{2.828 R}$	(15)	$E_{B}=E_{A}+\Delta E_{A B}=E_{A}+D_{A B} \sin \theta_{A B}$	(16)
$N_{B}=N_{A}+\Delta N_{A B}=N_{A}+D_{A B} \cos \theta_{A B}$	(17)		

Figure 4: Coordinates Systems
Source : Uren and Price [11]

3 MATERIALS AND METHODOLOGY

Data capturing and setting out materials for this study include GPS receiver. GPS receiver was able to connect with more than four satellites before coordinates readings and bookings. Computer workstation materials used to design the composite curve being study in this paper comprise the hardware and software components. The hardware components include systems board, central processing unit, memory, disks, a monitor, keyboard as an input device and printer as an output device. The software components used is the Microsoft Excel. Microsoft Excel is a spreadsheet with a table of cells with unique addresses for each cell. The important thing about the table is that data were entered into cells as labels and formulas written for the manipulation of same as modelling. Data modelled gave numerical results as simulation.

In this paper, a road leading to a fruit processing plant is used as a case study. A GPS receiver was used to capture coordinates (Table 2) of the beacons at the beginning $\left(E_{B,} N_{B}\right)$, at an intersection point $\left(E_{I}, N_{I}\right)$ and at the point where the road to the factory stops $\left(E_{S}, N_{S}\right)$. The deflection angle of the connected two straights was determined within spreadsheet using Table 2. Based on the design speed of $85 \mathrm{~km} / \mathrm{h}$, the length of the transition curve and the tangent lengths were determined in Table 3. Also in Table 3, the determination of the through chainage of the beginning of entry transition curve T and the through chainage of the end of entry transition T_{1} was defined. Table 4 is the modelling module of tangential angles for through chainages of the entry transition curve. Table 5 is the modelling module for the central circular arc of the composite curve. Table 6 is the modelling module of chord lengths tangential angles for through chainage of the central circular

curve. Table 7 is the modelling module for exit transition curve. Table 8 is the modelling module of chord lengths tangential angles for through chainage of the exit transition curve. Table 9 is the modelling module for coordinates of tangent point T , of entry transition curve, chainage 1537.088. Table 10 is the modelling module for coordinates of the initial sub-chord length for point C_{1}, of the entry transition curve at chainage 1550.000.

Table 11 is the modelling module for coordinates first general chord length C_{2}, of the entry transition curve at chainage 1575.000 . Table 12 is the modelling module for coordinates the second general chord length C_{3}, for the entry transition curve at chainage 1600.000 . Table 13 is the modelling module for coordinates of the final sub-chord length for point T_{1}, of the entry transition curve at chainage 1610.214. Table 14 is the modelling module for coordinates of initial sub-chord length end point C_{4}, of circular arc, chainage 1625.000 m .

Table 15 is the modelling module for coordinates of the final sub-chord length end point T_{2}, of the circular arc, chainage 1646.833 m . Table 16 is the modelling module for coordinates of tangent point U, of exit transition curve, chainage 1719.960 m . Table 17 is the modelling module for coordinates of the initial sub-chord length for point C_{7}, of the exit transition curve, chainage 1700.000 m . Table 18 is the modelling module for coordinates first general chord length point C_{6}, of exit transition curve, chainage 1675.000 m . Table 19 is the modelling module for coordinates for the second general chord length point C_{5}, of exit transition curve, at chainage 1650.000 m .

TABLE 2: THE MODELLING MODULE FOR DEFLECTION ANGLE DETERMINATION

	C	D	E	F	G	H
2	LABEL	MODELLING	UNIT	LABEL	MODELLING	UNIT
3	$\mathrm{E}_{\mathrm{B}}=$	971695:890	II	Distance $D_{\text {BI }}=$ $\left(\Delta \mathrm{E}_{\mathrm{BI}}{ }^{\wedge}\right.$ 2 + $\left.\Delta \mathrm{S}_{\mathrm{BI}}{ }^{\wedge}\right)^{\wedge}{ }^{\wedge} 0.5=$	$=\left(\mathrm{D}^{12}+\mathrm{DD1} 0^{\wedge} 2\right)^{\wedge} 0.5$	m
4	$\mathrm{N}_{\mathrm{B}}=$	678164.460	11	Distance $D_{\text {IS }}=$ $\left(\Delta \mathrm{II}^{\wedge} 2+\right.$ $\left.\left.\Delta \mathrm{N}_{15^{1}}\right)^{1}\right)^{1.5}=$	$=\left(\mathrm{Dl1} 1^{2}+\mathrm{DL} 2^{\wedge} 2\right)^{\wedge} 0.5$	m
5	$\mathrm{E}_{\mathrm{I}}=$	972796.670	III		=ATAN(D9/D10)	radians
6	$\mathrm{N}_{\mathrm{I}}=$	679364.870	m	Bearing BII	$=G 5^{*} 180 / 22^{*} 7$	deggres
9	$\mathrm{E}_{5}=$	974123.000	III		$=$ ATAY(DllD12)	radians
8	$\mathrm{N}_{\mathrm{S}}=$	680366.300	m	Bearing $\theta_{\text {IS }}=$	$=G 7180 / 22^{*} 7$	deggrees
9	$\begin{aligned} & \Delta \mathrm{E}_{\mathrm{BII}}=\mathrm{E}_{\mathrm{I}} . \\ & \mathrm{E}_{\mathrm{B}}= \end{aligned}$	=D5-D3	III	Deflection angle $\theta=$ Bearing tII- Bearing $\theta_{\text {IS }}=$	=67.65	radians
10		=D6-D4	m	Deflection angle $\theta=$	=G8.G6	degrres
11	$\begin{aligned} & \mathrm{UE}_{\mathrm{I} \text { I }}=\mathrm{E}_{\mathrm{S}} \\ & \mathrm{E}_{\mathrm{I}}= \end{aligned}$	=D7-D5	II	Deflection angle $\theta=$	$10^{\circ} 29^{\prime} 06^{\prime \prime}$	dms
12	$\begin{aligned} & \mathrm{N}_{\mathrm{IS}}=\mathrm{N}_{\mathrm{S}} . \\ & \mathrm{S}_{\mathrm{I}}= \end{aligned}$	=D8.D6	II			

TABLE 3: THE MODELLING MODULE FOR ENTRY TRANSITION CURVE

	C	D	I	F	G	H
19	LABEL	MODELLING	UXII	LABEL	MODELL IG	WIIT
20	Design speed, $V=$	85	Kimh	Chaninge of Intersection point, CH.I =	$=63$	
21	Rate of change of fadial acceleration, $\mathrm{c}=$	0.3		Through chaingage of $T=$ CH.I. IT =	$=620.018$	III
22	Supereleration, $\mathrm{e}^{\prime}=$	0.025	$\underline{w} s^{3}$	Through chaingege of $T_{1}=$ CHI. II $+\mathrm{L}_{\mathrm{T}}=$	$=611+516$	II
23	Side firction factor, $\mathrm{f}=$	0.07		Through chaingeg multiple interval ralue $=$	25	III
24	$\begin{aligned} & \text { Radius, } R= \\ & V^{\prime}(127((1)+f+f))= \end{aligned}$	$\begin{aligned} & =D D^{2} 02\left(127^{\text {*}}\right. \\ & (D 22+D 23) \end{aligned}$	III	Next multiple of 55 m for chainage after $T=$	1550	III
25	Desigqn Radius =	600	III	Last multiple of 5 m mor chainage before $\mathrm{T}_{3}=$	1600	III
26	Length of transition curre 	$=D^{20} 0^{13}\left(\left(3.0^{1.3}\right){ }^{*}\right.$ D21*D25)	III	Length of finitial sub cord=	=624.611	II
27	Slift $=L_{T}^{2} / 2 \cdot \mathrm{R}=$	= D2 6124.4215	III	Length ofgeneral chord=	25	II
28	$\begin{aligned} & \text { Tangenitlengith,IT= } \\ & (\mathrm{R}+\mathrm{S}) \text { tan } \theta / 2+\mathrm{LIT} / 2= \end{aligned}$		III	Length of final sub-chord=	=612.6\%	III
29	Tangentil length, IV = IT =	=D18	III			

TABLE 4: THE MODELLING MODULE OF TANGENTIAL ANGLES FOR THROUGH CHAINAGES OF THE ENTRY TRANSITION CURVE

	B	c	D	E	F	G
$3!$	Label		Hodiling			LABEL
38 3 3	Chingre	Clinuge Ihenilitration	$\begin{aligned} & \text { Clord } \\ & \text { Lenghth } \end{aligned}$	$\underset{\substack{\text { Cumplaifer } \\ \text { Lenght }}}{\substack{\text { an }}}$		
35	(m)		(m)	(m)	rudins	
36	=61]	I	0	1		
3	$=836+193$	9	=6\%	=139		d
38	$=384708$	4	=61	E2TOP8		b)
39	$=838+7 \times 29$	9	= 612			d
4	$=139+0 / 10$	I!	068	E $290 / 10$		$\delta_{\text {mu }}$
$4]$	St.1. $=$			(direts)	=0.6.0.563	$\begin{aligned} & \begin{array}{l} \left.\phi_{\operatorname{man} 3}\right\}= \\ L_{t}(R) \end{array} \end{aligned}$

TABLE 5: THE MODELLING MODULE FOR THE CENTRAL CIRCULAR ARC

	1	D	I	F	6	H
4	LABEL	Noselilic	VIII	Labil	yovelill	VII
H6	Nainum Deritituan 		malur		16.4	III
4	 		${ }^{1}$: 2190.612	III
48	Thuydid diunge it? $=C \mathrm{C} / \mathrm{I}+\mathrm{L}_{6}=$		II	Leglu by feprex davil:	1	III
H.	Vermintipentis. for dixingentry $]_{]}=$	164	I	Lengh fifinu sid. dayl:	= $2 \mathrm{P} / \mathrm{C} / 6$	11

ISSN 2229-5518
TABLE 6: THE MODELLING MODULE OF CHORD LENGTHS TANGENTIAL ANGLES FOR THROUGH CHAINAGE OF THE CENTRAL CIRCULAR CURVE

	B	C	D	E	F	G
52	LABEL		MODELLING			LABEL
53 54	Chaingge	Chainage Identification	Chord Length	Tangential Angle for Each Chord $a=$ 12R	Cumulative Clockwise Tangential Angle From T Relative to the Common Tangent	Tangential Angles Identification
55	(im)		(im)	radians	radians	
56	=G22	T_{1}	0	=D561/SDS5 5	=E56	
57	$=366+D 57$	C_{4}	=G.47	=D57/2/SDS5	=F56+E5 7	a_{1}
58	=B57+D58	I_{2}	=G49	=D5812/SDS25	$=$ F57+E58	a_{2}
59	SLM $=$		=SUM(D56:D58)	(checks)	=D47D25/2	(θ - 2 ¢max $/ 2$

TABLE 7: THE MODELLING MODULE FOR EXIT TRANSITION CURVE

	C	D	E	F	G	H
63	LABEL	MODELLING	UNIT	LABEL	MODELLING	UNIT
64	Through Chainage of $\mathrm{T}_{2}=$	=D48	III	Last Multiple of 25 m for Chainage Before U $=$	1700	m
65	Length of Exit Transition Curve $=$	=D26		Initial Sub-Chord Length from $\mathrm{U}=$	=D66-G64	m
66	Through Chainage of $\mathrm{U}=$	=SUM(D64:D65)		Length of General Chord $=$	25	m
67	First Multiple of 25in for Chainage After $\mathrm{T}_{2}=$	1650	m	Final Sub-Chord Length to $\mathrm{T}_{2}=$	=D67-D64	m

TABLE 8: THE MODELLING MODULE OF CHORD
LENGTHS TANGENTIAL ANGLES FOR THROUGH CHAINAGE OF THE EXIT TRANSITION CURVE

	B	C	D	E	F	G
70	LABEL		MODELLING			LABEL
71 72	Chainage	Chainage Identification	Chord Length	Cumulative Length	Cumulative \quad Clockwise Tangential Angle From U Relative To UI, $\Delta=\mathrm{L}^{\wedge} 2 / 6 \mathrm{RLT}$	Tangential Angles Identification
73	(m)		(m)	(m)	radians	
74	=D66	U	0	0	$\begin{aligned} & =\mathbf{E} 74^{\wedge} 2 /\left(6^{*} \$ D \$ 25\right. \\ & \text { *} \$ \text { SDS26 } \end{aligned}$	
75	=B74-D75	C_{7}	=G65	=D75	$\begin{aligned} & =\mathbf{E 7 5} \wedge 2 /\left(6^{*}\right. \text { SDS25 } \\ & \text { *SDS26) } \end{aligned}$	δ_{7}
76	=B75-D76	C_{6}	=G66	=E75+D76	$\begin{aligned} & =\mathbf{E} 76^{\wedge} 2 /\left(6^{*}\right. \text { SDS25 } \\ & \text { *SD26 } \end{aligned}$	δ_{6}
77	=B76-D77	C_{5}	=G66	=E76+D77	$\begin{aligned} & =\mathbf{E 7 7 \wedge 2 / (6 * \$ D S 2 5} \\ & * \text { SDS26) } \end{aligned}$	δ_{5}
78	=B77-D78	T2	=G67	=E77+D78	$\begin{aligned} & =\mathbf{E} 78^{\wedge} 2 /\left(6^{*}\right. \text { SDS25 } \\ & * \text { SDS26 } \end{aligned}$	$\delta_{\text {max }}$
79	SUM $=$		$\begin{aligned} & \text { =SUM(D7 } \\ & \text { 4:D78) } \end{aligned}$	(checks)	=F41	$\begin{aligned} & \phi \max / 3= \\ & \mathrm{L}_{\mathrm{T}} / 6 \mathrm{R} / 3 \\ & \hline \end{aligned}$

TABLE 9: THE MODELLING MODULE FOR COORDINATES TANGENT POINT T, OF ENTRY TRANSITION CURVE, CHAINAGE 1537.088 M

	C	D	E	F	G	H
83	LABEL	MODELIING	UNIT	LABEL	MODELIING	UNIT
84	Length of $\mathrm{II}=$	=D29	m	Cos Bearing of $\mathrm{II}=$	$=\cos (\mathrm{D} 87)$	radians
85	$\mathrm{E}_{\mathrm{I}}=$	=D5	m	$\Delta_{\mathrm{FI}}=D_{\pi} \times \operatorname{Sin}$ Bearing of $\mathrm{II}=$	$=D 84 *$ D88	m
86	$\mathrm{N}_{\mathrm{l}}=$	=D6	m	$\begin{aligned} & \Delta_{\mathrm{N}}=D_{\mathrm{II}} \mathrm{x} \operatorname{Cos} \\ & \text { Bearing of } \mathrm{TI}= \end{aligned}$	$=D 84 * G 84$	m
87	Bearing of $\mathrm{TI}=$	=G5	m	$\mathrm{E}_{\mathrm{T}}=\mathrm{E}_{\mathrm{I}} \cdot \Delta_{\text {III }}=$	=D85-G85	m
88	Sin Bearing of $\mathrm{II}=$	$=S I N(D 87)$	radians	$\mathrm{N}_{\mathrm{T}}=\mathrm{N}_{\mathrm{I}}-\Delta_{\mathrm{M}}=$	=D86-G86	m

TABLE 10: THE MODELLING MODULE FOR COORDINATES INITIAL SUB-CHORD LENGTH C_{1}, OF ENTRY TRANSITION CURVE, CHAINAGE 1550.000 M

	C	D	E	F	G	H
93	LABEL	MODELLING	UNIT	LABEL	MODELLING	UNIT
94	Length of $\mathrm{TC}_{1}=$	=D37	m	$\Delta \mathrm{N}_{\text {II }}=$	=D97-D99	II
95	$\delta_{1}=$	=F37	radians	$\begin{gathered} \text { Bearing of } \mathrm{TI}=\text { arc } \\ \operatorname{Tan}\left(\Delta \mathrm{E}_{\Pi} / \Delta \mathrm{N}_{\mathrm{T}}\right)= \end{gathered}$	=ATAN(D100/G94)	radians
96	$\mathrm{E}_{\mathrm{I}}=$	=D85	m	$\begin{array}{r} \text { Bearing of } \mathrm{TC}_{1}= \\ \text { Bearing of } \mathrm{TI}+\delta_{1}= \\ \hline \end{array}$	=G95+D95	radians
97	$\mathrm{N}_{\mathrm{I}}=$	=D86	m	$\begin{aligned} & \Delta \mathrm{E}_{\mathrm{TCl}}=\mathrm{TC}_{1} \mathrm{Sin} \\ & \text { bearing of } \mathrm{TC}_{1}= \end{aligned}$	=D94*SIN(G96)	m
98	$\mathrm{E}_{\mathrm{T}}=$	=G87	m	$\begin{aligned} & \Delta \mathrm{N}_{\mathrm{TC} 1}=\mathrm{TC}_{1} \mathrm{Cos} \\ & \text { bearing of } \mathrm{TC}_{1}= \end{aligned}$	$=\mathrm{D} 94 * \operatorname{Cos}(\mathrm{G} 96)$	m
99	$\mathrm{N}_{\mathrm{T}}=$	=G88	m	$\mathrm{E}_{\mathrm{Cl}}=\mathrm{E}_{\mathrm{T}}+\Delta \mathrm{E}_{\mathrm{TC1}}=$	=D98+G97	II
100	$\Delta \mathrm{E}_{\mathrm{II}}=$	=D96-D98	m	$\mathrm{N}_{\mathrm{Cl}}=\mathrm{N}_{\mathrm{T}}+\Delta \mathrm{N}_{\mathrm{TCl}}=$	=D99+G98	m

TABLE 11: THE MODELLING MODULE FOR COORDINATES FIRST GENERAL CHORD LENGTH C_{2}, OF ENTRY TRANSITION CURVE, CHAINAGE 1575.000 M

	C	D	E	F	G	H
104	LABEL	MODELLING	UNIT	LABEL	MODELLING	UNIT
105	LENGTH OF TC1 $=$	=D37	m	$\begin{array}{r} \text { bearing } \mathrm{C}_{1} \mathrm{C}_{2}= \\ \text { bearing } \mathrm{TC} \mathrm{C}_{1}+\mathrm{Y}= \end{array}$	=G96+D111	radians
106	$\stackrel{\text { LENGTH }}{ } \mathrm{FF}_{1} \mathrm{C}_{2}$	=D38	m	$\begin{array}{r} \Delta E_{\text {C1C }}=C_{1} C_{1} \text { SIN } \\ \text { BEARIG OF } \\ C_{1} C_{2}= \end{array}$	$=\mathrm{DI06*SIN}(\mathrm{G}$ 105)	m
107	$\delta_{1}=$	=F37	radians		$=D 106^{*} \operatorname{Cos}(G$ 105)	m
108	$\delta_{2}=$	=F38	radians	$\mathrm{E}_{\mathrm{Cl}}=$	-G99	m
109	$\begin{gathered} \sin _{1} \beta_{1}=\left(\mathrm{TC}_{1} / C_{1} C_{2}\right) \\ \left.* \operatorname{Sin}\left(\delta_{2}-\delta_{1}\right)\right)= \end{gathered}$	$=(D 105 / D 106)^{*}$ Sin (D108-D107)	radians	$\mathrm{N}_{\mathrm{Cl}}=$	=G100	m
110	$\beta 1=$	=ASII(D109)	radians	$\begin{gathered} \mathrm{E}_{\mathrm{C},}=\mathrm{E}_{\mathrm{E}_{1}+} \\ \Delta \mathrm{E}_{1,10^{\prime}}= \end{gathered}$	=G108+G106	m
111	$\mathrm{r}=\beta 1+\left(\delta_{2}-\delta_{1}\right)=$	$=$ D110+D108-D107	radians	$\mathrm{N}_{\mathrm{C}}=\mathrm{N}_{\mathrm{Cl}}+\Delta \mathrm{N}_{\mathrm{ClC2}}$	=G109+G107	m

TABLE 12: THE MODELLING MODULE FOR COORDINATES SECOND GENERAL CHORD
LENGTH C_{3}, OF ENTRY TRANSITION CURVE,
CHAINAGE 1600.000 M

	C	D	E	F	6	H
115	LABEL	MODELIING	UNIT	LABEL	MODELILNG	UNIT
116	Length of $T_{1}=$	=037	m	$Y=\beta_{2}+(\delta 3 \cdot \delta 2)=$	$=0123+0121-$ 0120	radians
117	Length of $C_{1} C_{2}=$	=038	m	$\begin{array}{r} \text { bearing } C_{2} C_{3}= \\ \text { bearing } C_{1} C_{2}+Y= \end{array}$	$=6105+6116$	radians
118	Lenghth of $C_{2}=$ $T C_{1}+C_{1} C_{2}=$	=0116+0117	m	$\begin{aligned} & \Delta E_{2 g 3}=C_{2} C_{3} S \text { in } \\ & \text { bearing of } C_{2} C_{3}= \end{aligned}$	$=0119^{*}$ Sin\|(1 17)	radians
119	Length of $C_{2} C_{3}=$	=039	m	$\begin{aligned} & \Delta N_{\mathrm{COB}=}={\mathrm{C} 2 C_{3}}^{C O S} \\ & \text { bearing of } \mathrm{C}_{2}{ }_{3}= \end{aligned}$	$=D 119^{*} \operatorname{Cos}(161$ 17)	m
120	$\delta_{2}=$	=F38	radians	$E_{0}=$	=6110	m
121	$\delta_{3}=$	= 539	radians	$\mathrm{N}_{0}=$	=6111	m
122	$\begin{array}{r} \sin _{2}= \\ \left(T c_{2} \mid C_{2} c_{3}\right)^{*} \sin ^{\prime}\left(\delta_{3} \cdot \delta_{2}\right)= \end{array}$	$=(0118 / 0119)^{*}$ SIN\|0121. D120)	radians	$\mathrm{E}_{3}=\mathrm{E}_{20}+\Delta \mathrm{E}_{203}=$	$=6120+6118$	m
123	$\beta_{2}=$	=ASIN(0122)	radians	$N_{C O}=N_{Q_{Q}}+\Delta N_{\text {COS }}=$	$=6121+6119$	m

TABLE 13: THE MODELLING MODULE FOR COORDINATES OF THE FINAL SUB-CHORD LENGTH FOR POINT T_{1}, CHAINAGE 1610.214 M

	C	D	E	F	G	H
127	LABEL	MODELIING	UNIT	LABEL	MODELLING	UNIT
128	Length of $T_{2}=$	=0118	m	$Y=\beta_{3}+\left(\delta_{\text {max }}-\delta_{3} \mid=\right.$	$=D 135+$ [0133 - D132\|	radians
129	Length of $C_{2} C_{3}=$	=039	m	$\begin{array}{r} \text { bearing } \mathrm{C}_{3} \mathrm{~T}_{1}= \\ \text { bearing } \mathrm{C}_{2} \mathrm{C}_{3}+Y= \end{array}$	$=6117+6128$	radians
130	Length of $T_{3}=$ $T C_{2}+C_{2} C_{3}=$	$=0128+0129$	m	$\begin{aligned} & \mathrm{AE}_{[J \pi 11}=C_{3} T_{1} \mathrm{SNLN}_{1} \\ & \text { bearing of } C_{3} T_{1}= \end{aligned}$	$=0131^{*} \operatorname{SIN}(1629)$	m
131	Length of $C_{3} T_{1}=$	= 240	m	$\begin{aligned} & \Delta N_{G T I}=C_{3} T_{1} C O S \\ & \text { bearing of } C_{3} T_{1}= \end{aligned}$	$=D 1311^{*} \operatorname{Cos}(1129)$	m
132	$\delta_{3}=$	=339	radians	$E_{B}=$	$=6122$	m
133	$\delta_{\text {max }}$	= 740	radians	$\mathrm{N}_{\mathrm{G}}=$	$=6123$	m
134	$\begin{aligned} & \operatorname{Sin} \beta_{3}=\left(T_{3} \mid C_{3} T_{1}\right) \\ & { }^{2} \operatorname{Sin}\left(\delta_{\text {max }} \delta_{3}\right)= \end{aligned}$	$\begin{aligned} & =\mid(0130 / 0131)^{*} \\ & \operatorname{Sin}(0133-D 132) \end{aligned}$	radians	$\mathrm{E}_{71}=\mathrm{E}_{(3)}+\Delta \mathrm{E}_{611}=$	$=6132+6130$	m
135	$\beta_{3}=$	=ASIN(D134)	radians	$N_{\text {T1 }}=N_{C 3}+\Delta N_{\text {Gri }}=$	$=6133+6131$	m

TABLE 14: THE MODELLING MODULE FOR COORDINATES INITIAL SUB-CHORD LENGTH END POINT C_{4}, OF CIRCULAR ARC, CHAINAGE 1625.000 M

	C	D	E	F	G	H
139	LABEL	MODELLIVG	VIIT	LABEL	MODELLIVG	UNIT
140	$\phi_{\text {min }}=$	=D46	radians	$\begin{array}{r} \mathrm{UE}_{\mathrm{IICL}}=\text { Length } \\ \mathrm{I}_{1} \mathrm{C}_{1} \mathrm{Sin} \\ \text { Bearing } \mathrm{I}_{1} \mathrm{C}_{1}= \end{array}$	$=$ D14 $5^{* S I L}(\mathrm{D} 144)$	III
141	Bearing $\mathrm{TI}=$	=69\%	radians		$=D 144^{*} \operatorname{Cos}(D 144)$	III
142	$\begin{array}{r} \text { Bearing } I / Z= \\ \text { Bearing } I I+\phi_{\text {mir }} \\ = \end{array}$	$=S T M(D 140: D 141)$	radians	$\mathrm{E}_{\mathrm{Il}}=$	=6134	III
143	$a_{1}=$	=Fi	radians	${ }_{\mathrm{Tl}}=$	-C135	III
144	$\begin{array}{r} \text { Bearing } \mathrm{T}_{1} \mathrm{C}_{4}= \\ \text { Bearimg } \mathrm{I}_{1} \mathrm{l}+\mathrm{C}_{1}= \end{array}$	$=S D M(D 142: D 143)$	radians	$\begin{aligned} & \mathrm{E}_{41}=\mathrm{E}_{\mathrm{Tl}}+ \\ & \Delta \mathrm{E}_{\mathrm{TH}} \mathrm{Cl}= \end{aligned}$	$=$ Cl142+G140	III
145	Length $\mathrm{T}_{1} \mathrm{C}_{4}=$	= D3 ${ }^{7}$	III	$\begin{aligned} & S_{\mathrm{Ca}}=S_{\text {Ilt }} \\ & S_{\text {ICG }}= \end{aligned}$	$=\mathrm{Cl} 13+\mathrm{Cl} 141$	III

TABLE 15: THE MODELLING MODULE FOR COORDINATES OF THE FINAL SUB- CHORD LENGTH END POINT T_{2}, OF THE CIRCULAR ARC, CHAINAGE 1646.833 M

	C	D	E	F	G	H
149	LABEL	MODELIING	UNTT	LABEL	MODELING	UNTT
150	$a_{1}=$	=F57	radians	$\begin{aligned} & \Delta E_{\text {can }}=\text { Length } C_{4} T_{2} x \\ & \text { Sin Bearing } C_{4} T_{2}= \end{aligned}$	$=0155 * / 51 /(0154)$	m
151	$a_{2}=$	=F58	radians	$\begin{aligned} & \Delta N_{\text {carn }}=\text { Length } \mathrm{C}_{4} \mathrm{~T}_{2} \mathrm{x} \\ & \text { Cos Bearing } \mathrm{C}_{4} \mathrm{I}_{2}= \end{aligned}$	$=0155^{*} \cos (0154)$	m
152	$\lambda=\left(a_{1}+a_{2}\right)=$	=SUM(0150:0151)	radians	$E_{\text {ch }}=$	$=6144$	m
153	Bearing $T_{1} C_{4}=$	=D144	radians	$\mathrm{Na}_{\text {a }}=$	$=6145$	m
154	$\begin{array}{r} \text { Bearing } C_{4} T_{2}= \\ \text { Bearing } T_{4}+1 \\ = \end{array}$	=SUM(0152:0153)	radians	$\mathrm{E}_{7}=\mathrm{E}_{0}+\Delta \mathrm{E}_{(a n 2}=$	$=6152+6150$	m
155	Length $C_{4} T_{2}=$	=058	m	$\mathrm{N}_{12}=\mathrm{Nab}_{\text {cta }}+\mathrm{NaCra}^{2}=$	$=6153+6151$	m

ISSN 2229-5518
TABLE 16: THE MODELLING MODULE FOR COORDINATES TANGENT POINT U, OF EXIT TRANSITION CURVE, CHAINAGE 1719.960 M

	C	D	E	F	G	H
159	LABEL	MODELLING	UNIT	LABEL	MODELLING	UNIT
160	$\theta=$	=69	radians	$\begin{gathered} \mathrm{d}_{\mathrm{Tl}}=\text { LengthIUx } \\ \text { Cos Bearing } \mathrm{IU}= \end{gathered}$	$=D] 63^{*} \cos (D$ 162)	III
161	Bearing $\mathrm{TI}=$	-G95	radians	$\mathrm{E}_{1}=$	= D ${ }^{\text {a }}$	III
162	$\begin{array}{r} \text { Bearing IV }= \\ \text { Bearing } \mathrm{II}+\theta= \end{array}$	=SDM(D160:D161)	radians	$\mathrm{N}_{\mathrm{l}}=$	=D6	III
163	Tangent lenggh $\mathrm{IU}=$	=D29	III	$\mathrm{E}_{\mathrm{V}}=\mathrm{E}_{\mathrm{I}}+\Delta \mathrm{E}_{\mathrm{TV}}=$	$=G 161+D 164$	III
164	$\begin{gathered} \mathrm{UE}_{\mathrm{Il}}=\text { LengighIUI } \\ \text { Sin Bearing IU } \end{gathered}$	$=D 163^{*}$ SIJ $\left(\right.$ D16 ${ }^{\text {a }}$)	III	$\mathrm{S}_{\mathrm{V}}=\mathrm{S}_{\mathrm{T}}+\mathrm{S}_{\mathrm{TV}}=$	$=\mathrm{Cl} 16+\mathrm{Cl} 160$	III

TABLE 17: THE MODELLING MODULE FOR COORDINATES OF THE INITIAL SUB- CHORD LENGTH FOR POINT C_{7}, OF THE EXIT TRANSITION CURVE, CHAINAGE 1700.000 M

	C	D	E	F	6	H
168	LABEL	MODELIING	UNIT	LABEL	MODELILIN	UNIT
169	Length of $U C_{7}=$	=075	m	$\triangle N_{u l}=$	=0172-0174	m
170	$\delta_{7}=$	=775	radians	$\begin{array}{r} \text { Bearing of UI: } \\ \text { Arc Tan }\left(\Delta E_{V} / \Delta N_{U}\right)= \end{array}$	$=A T A N(0175 /(169)$	radians
171	$E_{0}=$	=6163	m	Bearing of $U_{1}=$ bearing of U1- $\delta_{7}=$	=6170-0170	radians
172	$N_{u}=$	=6164	m	$\Delta E_{U C 1}=U C_{7}$ Sin bearing of $U_{1}=$	$=D 16{ }^{*}{ }^{*} \operatorname{SI}(1671)$	m
173	$E_{1}=$	=05	m	$\Delta N_{U n}=U G_{7} \cos$ $\text { bearing of } U C_{7}=$	$=0169^{*} \cos (6171)$	m
174	N_{F}	=06	m	$\mathrm{E}_{0}=\mathrm{E}_{0}-\Delta \mathrm{E}_{\mathrm{VCO}}=$	=0171-6172	m
175	$\Delta E_{U 1}=$	=0171-0173	m	$\mathrm{N}_{\mathrm{C}}=\mathrm{N}_{\mathrm{V}} \cdot \Delta \mathrm{N}_{\mathrm{VC7}}=$	=0172-6173	m

4 RESULTS AND DISCUSSION

The summary of the modelling that processed the coordinates of points to define the composite curve is shown in Table 20. Table 21 is showing the summary of the simulation of coordinates for the design and setting out of the composite curve on site. Modelling modules of Table 2 through Table 19 allow iteration process by engineers to automate design variables through a discrete-event simulation design process to develop coordinates for a composite curve. This is accomplished through an integrated ICT design environment that links design activities of entry transition curve, circular arc and exit transition curve to produce coordinates for a composite curve.

TABLE 18: THE MODELLING MODULE FOR COORDINATES FIRST GENERAL CHORD LENGTH POINT C_{6}, OF EXIT TRANSITION CURVE, CHAINAGE 1675.000 M

	C	D	E	F	G	H
179	LABEL	MODELLING	UNIT	LABEL	MODELLIVG	UNIT
180	Length of UC $C_{1}=$	=D169	m	$\begin{array}{r} \text { bearing } \mathrm{C}_{9} \mathrm{C}_{6}= \\ \text { bearing } \mathrm{CC}_{9}-\mathrm{Y}= \end{array}$	=G171-D186	II
181	Length of $\mathrm{C}_{4} \mathrm{C}_{6}=$	25	m	$\begin{aligned} & \Delta E_{C C O}=C_{1} C_{6} S_{S i n} \\ & \text { bearing of } C_{1} C_{6}= \end{aligned}$	$\begin{aligned} & =\mathrm{D} 181+\text { SIN } \\ & (\mathrm{G} 180) \end{aligned}$	II
182	$\delta_{1}=$	=F75	radians		$\begin{aligned} & =D 181^{\circ} \mathrm{COS} \\ & (\mathrm{G} 180) \end{aligned}$	II
183	$\delta_{6}=$	=F76	radians	$\mathrm{E}_{(1)}=$	=G174	m
184		$\begin{array}{\|l\|l} \hline=(D 180-D 181)^{*} \\ \text { Sin(D183-D182) } \\ \hline \end{array}$	radians	$\mathrm{N}_{\mathrm{Cl}}=$	=C175	m
185	$\beta 7=$	=ASII(D184)	radians	$\mathrm{E}_{60}=\mathrm{E}_{67}-\mathrm{IE}_{1760}=$	=G183-G181	m
186	$\begin{array}{r}Y=\beta 7+(86-\delta 7) \\ = \\ \hline\end{array}$	$=D 185+D 183 .$ D182	radians		=G184-G182	II

TABLE 19: THE MODELLING MODULE FOR COORDINATES FOR THE SECOND GENERAL CHORD LENGTH POINT C_{5}, OF EXIT TRANSITION CURVE, CHAINAGE 1650.000 M

	C	D	E	F	G	H
190	LABEL	MODELLING	UNIT	LABEL	Modelling	UNIT
191	Length of $\mathrm{UC}_{9}=$	=D180	m	$Y=\beta 6+(85-\delta 6)=$	$=\text { D198+D196- }$ D195	radians
192	Length of $\mathrm{C}_{7} \mathrm{C}_{6}=$	=D181	m	$\begin{array}{r} \text { bearing } \mathrm{C}_{6} \mathrm{C}_{5}= \\ \text { bearing } \mathrm{C}_{7} \mathrm{C}_{6}-\mathrm{Y}= \end{array}$	=G180-G191	radians
193	$\begin{array}{r} \text { Length of } \mathrm{UC}_{6}= \\ \mathrm{UC}_{7}+\mathrm{C}_{4} \mathrm{C}_{6}= \end{array}$	=D191+D192	m	$\begin{aligned} & \Delta \mathrm{E}_{\mathrm{CCO}}=\mathrm{C}_{6} \mathrm{C}_{5} \mathrm{Sin} \\ & \text { bearing of } \mathrm{C}_{6} \mathrm{C}_{5}= \end{aligned}$	$\begin{array}{\|l} \hline=\mathrm{D} 194 \div \mathrm{Sin} \\ (\mathrm{G} 192) \end{array}$	radians
194	Length of $\mathrm{C}_{6} \mathrm{C}_{5}=$	25	m	$\begin{array}{r} \Delta N_{C 6 C_{5}}=\mathrm{C}_{6} \mathrm{C}_{5} \mathrm{COS} \\ \text { bearing of } \mathrm{C}_{6} \mathrm{C}_{5}= \end{array}$	$\begin{aligned} & =\mathrm{D} 194+\mathrm{COS} \\ & (\mathrm{G} 192) \end{aligned}$	m
195	$\delta_{\delta}=$	=F76	radians	$\mathrm{E}_{\text {c }}=$	=G185	m
196	$\delta^{5}=$	=F77	radians	$\mathrm{N}_{\mathrm{Cl}}=$	=G186	m
197	$\begin{array}{r} \operatorname{Sin} \beta_{6}= \\ \left({ }^{\left(U C_{\gamma} C_{0} C_{5}\right)}\right. \\ { }^{*} \operatorname{Sin}\left(\delta_{5} ;-\delta_{6}\right) \end{array}$	$\begin{array}{\|l} \hline=(\text { D193/D194)* } \\ \text { SN(D196- } \\ \text { D195) } \\ \hline \end{array}$	radians	$\mathrm{E}_{69}=\mathrm{E}_{66}-\mathrm{EE}_{606}=$	=G195-G193	m
198	$\beta 6=$	=ASII(D197)	radians	$N_{C G}=\mathrm{N}_{C 6}-\mathrm{SN}_{\mathrm{CcG}}=$	=G196-G194	m

Numerous design iterations for the purpose of improving and refining the coordinates to develop a composite curve without expending a large amount of time or effort are possible using the modelling tables. The developed modelling tables within spreadsheet environment are valuable features with the ability to view the resulting effect of the computation of coordinates and modifications. Hence, coordinates for a composite curve are automatically carried out via a discrete-event methodology without the need to conduct the numerous intermediate steps that have been associated with the conventional manual design method. The method developed here does not need the
involvement of vendors to complement design activities as in the case of specific purpose application programs and the system operation is not under license.

5 CONCLUSIONS AND RECOMMENDATIONS

The following conclusions and recommendations are derived from the investigation carried out in this study.

5.1 CONCLUSIONS

1. A new methodology of computing coordinates for designing a composite curve via a discrete-event simulation approach in an ICT environment has been vividly carried successfully.
2. This novel methodology has been successfully carried out by making use of coordinates generated by GPS on site and advancing same in Microsoft Excel to compute coordinate to design a composite curve.
3. The process allows coordinates to be computed for a composite curve by using various related variables that change instantaneously at separate points in different modelling module tables while making use of a readily available general purpose application program.

TABLE 20: MODELLING MODULE SUMMARY OF THE COMPOSITE CURVE COORDINATES

	J	K	L	. 1
215	LABEL		MODELING	
216	Point	Throngigh Chainge	Coordinites	
217		11	mE	m)
218	I	1370,088	=687	=688
219	C_{1}	1550	=699	=G100
220	C_{2}	157	=G110	=G111
21	C_{3}	1600	=G12	=G123
m	I_{1}	1610.214	$=6134$	=G135
23	C_{4}	1625	=G14	=G175
22.4	I_{2}	1666.833	=615	=G135
215	c_{5}	1650	=G197	=G198
226	C_{6}	1675	=6183	=G186
271	G	1700	$=6174$	=G175
228	U	1719.96	=G163	=G16

4. The result is similar to the conventional hand method of computation but this novel methodology is in an electronics environment.
5. The methodology is amenable to intranet and internet and allows various engineers to work on a composite curve for improvement optimally.
6. The process has the ability to enhance the productivity of highway engineers to conduct numerous iteration of computations for a composite curve coordinates for the purpose of improving and refining without expending a large amount of time or effort.

5.2 RECOMMENDATIONS

1. The methodology is highly recommended as a better alternative to the use of programming software, specific purpose application programs and conventional hand method in the computation of coordinates for design of road or rail composite curve.
2. The methodology is also highly recommended as a better alternative while setting out of road or rail composite curve.

TABLE 21: SUMMARY OF THE COMPOSITE CURVE COORDINATES SIMULATION MODULE

	J	K	L	II
215	LABEL		Similation	
216	Point	Through Chainge	Coortinates	
217		m	mE	m)
218	T	1357.088	972734,44	699297.340
219	C_{1}	1550.000	972743.48	699306.852
20	C_{1}	1575.00	972760.231	699225.143
221	C_{3}	1600.000	972177.999	699343.017
22	I_{1}	1610.214	972785.411	699350.046
23	C_{4}	165.000	972796.175	699360.182
24	T:	1666.833	972812.696	699374,457
225	C_{5}	1650.000	972814.488	699376.786
226	C_{6}	1675.00	972834.14	69932.6168
27	C_{1}	1700.000	972833.922	679407973
228	U	1719.96	972809.845	699420.009

REFERENCES

[1] T. J. Schriber and D. T. "Brunner Inside Discrete-Event Simulation Software How It Works and Why It Matters," Proceedings of the $37^{\text {th }}$ Conference on Winter Simulation, pp.167-177, 2005.
[2] A. M. Law and W. D. Kelton. "Simulation Modeling and Analysis' 3rd Edition, Tata McGraw-Hill, New Delhi, 2007.
[3] J. S. Carson. "Introduction to Modelling and Simulation," Proceedings of the $3^{7 \text { th }}$ conference on winter simulation, pp.16-23, 2005.
[4] A. S. Adedimila and I. Akiije. "National Capacity Development in Highway Geometric Design," Proceedings, National Engineering Conference. The Nigerian Society of Engineers, Abeokuta, 228-235, 2006.
[5] I. Akiije and S. A. Adedimila. "A New Approach to the Geometric Design of Highway Alignments Using a Microcomputer," Proceedings of the International Conference in Engineering, paper 43, at the University of Lagos, Lagos, Nigeria, 2005.
[6] I. Akiije. "An Optimal Control for Highway Horizontal Circular Curve Automation," Proceedings of International Conference on Innovations in Engineering and Technology, Faculty of Engineering, University of Lagos, Akoka, Lagos, pp 669-681, 2011.
[7] I. Akiije. "An Analytical and Autograph Method for Highway Geometric Design," Ph.D. Thesis, School of Postgraduate Studies, University of Lagos, Akoka, Lagos, 2007.
[8] C. Tiberius. "Standard Positioning Service," Handheld GPS Receiver Accuracy in GPS World, Vol. 14, No. 2 pp. 44-51, 2003.
[9] K. McDonald. "GPS Modernization Global: Positioning System Planned Improvement," Proceedings ION Annual Meeting pp. 36-39, 2005.
[10] Andrzej Kobryn. "Polynomial Solutions of Transaction Curves," Technical Papers, Journal of Surveying Engineering / Volume 137/Issue 3, 2011.
[11] J. Uren and W. F. Price. "Surveying for Engineers." 5th Edition, Palgrave Macmillan, Great Britain, 2010.

